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Some measurements in the self-preserving jet 
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Boeing Scientific Research Laboratories, Seattle, Washington 98124 

(Received 6 June 1968 and in revised form 12 March 1969) 

The axisymmetric turbulent incompressible and isothermal jet was investigated 
by use of linearized constant-temperature hot-wire anemometers. It was estab- 
lished that the jet was truly self-preserving some 70 diameters downstream of 
the nozzle and most of the measurements were made in excess of this distance. 
The quantities measured include mean velocity, turbulence stresses, inter- 
mittency, skewness and flatness factors, correlations, scales, low-frequency 
spectra and convection velocity. The r.m.s. values of the various velocity fluctua- 
tions differ from those measured previously as a result of lack of self-preservation 
and insufficient frequency range in the instrumentation of the previous investiga- 
tions. It appears that Taylor’s hypothesis is not applicable to this flow, but the 
use of convection velocity of the appropriate scale for the transformation from 
temporal to spatial quantities appears appropriate. The energy balance was 
calculated from the various measured quantities and the result is quite different 
from the recent measurements of Sami (1967), which were obtained twenty 
diameters downstream from the nozzle. I n  light of these measurements some 
previous hypotheses about the turbulent structure and the transport phenomena 
are discussed. Some of the quantities were obtained by two or more different 
methods, and their relative merits and accuracy are assessed. 

1. Introduction 
The present paper is concerned with an experimental investigation of the 

self-preserving turbulent axisymmetric jet. This, being a relatively simple turbu- 
lent shear flow, has been investigated in some detail before. Many of the mean 
velocity measurements with Pitot tubes are well summarized in Hinze (1959). 
Most of the turbulent quantities in the fully developed jet are associated with 
Corrsin (1943), Corrsin & Uberoi (1949, 1951), and Corrsin & Kistler (1955). 

Existing measurements of mean velocity distributions indicate that the 
profile becomes reasonably self-preserving some few diameters downstream of 
the nozzle, although most of these results exhibit a considerable scatter a t  the 
edges of the flow. The turbulent intensities, however, show marked departures 
from self-preservation even on the axis of the jet. It was concluded by Townsend 
(1956) that the effect of the initial conditions near the nozzle exit diminishes 
rather slowly with downstream distance, and the reported measurements were 
not made far enough downstream to attain self-preservation. The lack of self- 
preservation handicapped the study of this flow, and did not enable a proper 
comparison with other self-preserving flows. 
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The local turbulence levels a t  the edges of jet flows are high, making the 
measurements extremely difficult. Indeed, all the older measurements were 
adversely affected by this fact, since the hot-wire output did not respond linearly 
to the instantaneous velocity. I n  order to  avoid some of the experimental diffi- 
culties, it was suggested (Townsend 1956) that measurements were made in 
a high-velocity jet discharging into a low-velocity stream. This suggestion was 
taken up by Bradbury (1965) in the two-dimensional jet flow. However, since 
a jet in a uniform stream is inherently non-self-preserving, one may be replacing 
one difficulty by another. 

Consequently, it was felt that accurate measurements in the self-preserving 
jet could be accomplished by using linearized constant-temperature hot-wire 
anemometers and integrating over long periods of time to obtain good statistical 
averages also in the outer region of the flow. The distributions of mean velocities 
and turbulent intensities, as well as higher-order velocity products across the jet, 
indicate that the self-preserving region was attained. The investigation was then 
expanded to include double and triple velocity products, intermittency, energy 
balance, space-time correlations and scales, convection velocity and its de- 
pendence on frequency. 

The experiment was carried out at air speeds allowing the flow to be con- 
sidered incompressible. (The velocity a t  the jet nozzle was in most cases 51 m/sec, 
but some measurements were made a t  72m/sec.) The Reynolds number based 
on nozzle diameter was of the order of lo5. 

2. Experimental equipment and procedure 
The jet emerged from a nozzle 1.04 in. in diameter a t  a Reynolds number of 105. 

The velocity of the jet was maintained constant to an accuracy better than 1 %, 
and the temperature was maintained constant to within 1 'I?. The room is air- 
conditioned and the temporal variation of temperature in it did not exceed 2 "I?. 
The air was cleaned using a Honeywell electrostatic precipitator, which removed 
particles and hydroca,rbons in the air down to  0.04 microns in diameter. At the 
exit plane the jet was essentially laminar, having a turbulence intensity of 
approximately 0-1 yo. The nozzle was placed in the middle of a wall 79ft. high 
and 8 ft. wide and the entire jet was enclosed in a cage (79ft. high, 8 ft. wide, 17 ft. 
long and open on the far side) made out of two &in. mesh screens placed 2Qin. 
apart. This arrangement eliminated all room draughts without altering the flow, 
and thus permitted measurements far downstream from the nozzle. 

Constant-temperature DISA anemometers and linearizers were used with 
standard DISA hot wires (1.2 mm long and 5pm in diameter). For measurements 
of turbulent intensities a.c. capacitive couplings were constructed and checked 
to have a flat response to frequencies of 0.05 Hz. The squared a.c. signals were 
integrated by using operational amplifiers in conjunction with capacitors. The 
integrated voltage was read on a Hewlett Packard digital voltmeter, and the 
time was recorded on the same company's counter. Sometimes, three integrators 
were used simultaneously (e.g. correlation measurements), while the signals were 
processed in different ways; this procedure reduced the scatter significantly. 
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The integration times were increased until the scatter in the r.m.s. value was 
less than 1 yo; integration times of 5 min were not uncommon. Various Philbrick 
analogue elements? were used for squaring, multiplying, adding and subtracting 
ofthe signals. Tektronix differentiating circuits were used for differentiation with 
respect to time. The autocorrelations weremeasuredwith aP.A.R.-100 correlator, 
and the harmonic analysis was performed with Krohn-Hite band pass filters. 
When x-probes were used, each of the attenuators on the linearizers was adjusted 
to give the same output for each wire when the probe was perfectly aligned with 
the stream; the yaw sensitivity ofeach wire was then checked. The entire network 
was calibrated before each run and rechecked a t  the end of a run. 

The turbulent intensities were corrected for tangential cooling according to 
the formulas given by Champagne & Sleicher (1967). The response of the hot 
wire was assumed linear, and no corrections resulting from higher-order terms 
were applied. The higher-order terms were measured, however, and are given 
in the report. 

3. The mean velocity 
The mean velocity was measured with a single hot wire perpendicular to the 

axis of the flow. After determining that the jet was indeed axisymmetric, the 
traverses were made along one radius only. Figure 1 shows the mean velocity 
distribution across the jet a t  different stations downstream, ranging from 40 
to 100 diameters. The velocity scale in this figure is the maximum velocity at 
each section, and the distance from the axis of symmetry, y, is divided by the 
distance from the nozzle. Quite often the length chosen to render y dimensionless 
is the local half-width of the profile, namely the width corresponding to the 
point where the mean velocity is equal to one-half of its value on the axis. The 
use of this definition does not show any changes in the location of the hypo- 
thetical origin of the flow, which are sometimes significant (e.g. in the small- 
deficit wake, Townsend 1956); and deviations from similarity are less visible. 
From figure 1 it may be deduced that the mean velocity profile is similar, and the 
hypothetical origin does not change with x. The measured values agree quite 
well with those reported by Hinze & Van der Hegge Zijnen (1949), but the 
scatter a t  large values of y]x was eliminated by averaging the measurements 
Over a long period of time. 

Two theoretical models for predicting the shape of the mean velocity profile 
exist. One, based on the mixing-length hypothesis, was obtained by Tollmien 
(1926), and another, based on the assumption of constant eddy exchange co- 
efficient across the flow, was calculated by Schlichting (1961). Neither of these 
two predicted profiles agrees well with the experimental values across the entire 
flow. Tollmien’s solution agrees moderately well with experiment in the outer 
part of the flow, while the solution of Schlichting is in good agreement with 
measured values in the inner part of the flow (figure 2).  The concept of eddy vis- 
cosity applies only to turbulent flow (Townsend 1949), yet most measurements 

7 Model P65AU (with a minimum large-signal frequency response of 20 kHz), models 
PSQP and PSQN. 
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performed in turbulent free shear flows represent a time average of velocity 
inside and outside the turbulent front. To enable a proper comparison between 
theory and experiment, separate measurements should be made in the rotational 
and irrotational regions as shown recently by Kibens & Kovasznay (1967) in 
turbulent boundary layers. Assuming that the entrainment velocity outside the 
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FIGURE 1. Mean velocity profile. - - -, Hinze et uZ. (1949). 

0, x / D  = 40; A, 50; 0, 60; 0, 75; 0, 97-45. 
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FIGURE 2. Mean velocities : comparison with theories. -, experimental values ; 
___  , Schlichting (1961), and - - - -, Tollmien (1926), theory. 
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turbulent front is primarily normal to the jet axis (Stewart 1956), the mean 
velocity profile in the turbulent region is obtained by dividing the overall time 
average by the intermittency factor, y. In this case, the theoretical profile of 
Schlichting underestimates the experimental values of a / y  (see figure 2 ) .  Since 
the entrainment velocity of the irrotational fluid in the vicinity of the turbulent 
front has also a component parallel to the jet axis,the value of D/y > qurbulent; 
this may explain the discrepancy between theory and experiment. The trans- 
verse velocity P given in figure 2 was calculated using the continuity equation. 
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centre-line. 0,  uo/Um; A, .,/(F)/Um); U, .,/(v'2)/iJm; 0, J(P)/um). 
FIGURE 3. Variation of mean velocity and turbulent intensities along the jet 

The variation of the mean velocity along the axis of the jet is given in figure 3. 
Judging from the mean veloeity alone, it would appear that the jet is already 
self-preserving at  some 20 nozzle diameters downstream of the nozzle. If the 
measurements were concluded a t  x/D < 50 the hypothetical origin of the flow 
would appear to be located 3 diameters in front of the nozzle. Taking into account 
measurements at x /D > 50, the hypothetical origin was moved to 7 diameters 
in front of the nozzle. A similar observation was made by Townsend (1956) for 
the small-deficit wake, and i t  may be concluded that the rate of growth of the 
jet is sensitive to conditions of self-preservation, while the shape of the normalized 
velocity profile is not. 

4. Turbulent intensities 
The turbulent intensities were measured with an X meter, but the r.m.s. 

values of the longitudinal fluctuations were also obtained with a single normal 
wire and the results were identical. The response of the hot wire was assumed 
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linear, and the direction of the mean flow parallel to the axis of the jet. The varia- 
tion of the turbulence intensities along the axis of the jet is plotted in figure 3. 
It is interesting to note that, whereas the longitudinal fluctuations become self- 
similar some 40 diameters downstream of the nozzle, the radial and tangential 
turbulence intensities attain similarity some 70 diameters from the nozzle. It is 
only then that the flow becomes truly self-preserving. A given body of fluid is 
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FIGURE 4. Intensity of u'-fluctuation across the jet. -- , Corrsin (1949), x/d = 20; 
- - -, present investigation, x ld  = 20; -. .-, present investigation, xld = 60, using 
DISA correletor (flat frequency down to 5 Hz). a, x/d = 50; 0, 60; 0. 75; 0, 97.5. 

said to  be in a self-preserving state when all of its turbulent components are in 
equilibrium. However, since the energy is transferred from the mean motion 
directly to u' fluctuations, and only pressure-velocity -gradient correlations 
transfer the energy further to other components of the turbulent motion, it is 
little wonder that similarity is reached in steps. First, the mean velocity becomes 
similar, which leads to certain production of u', and only after a balance is 
reached between these two quantities an equilibrium may be attained in the 
transverse components a,s well. Townsend (1956) predicted that self-preserving 
flow may be realized only some 50 diameters downstream of the nozzle. The present 
results verify this statement. 

The magnitude of vTand wT is less than that of zz even as far downstream as 
100 diameters. This result does not agree with measurements of Gibson (1963), 
who observed almost a perfect isotropy on the centre-line of the jet at x / D  = 50. 
This discrepancy would have been even greater if our measured values of the 
transverse velocity fluctuations were not corrected for tangential cooling. The 
value of G2 measured on the jet axis is, however, in agreement with Gibson's 
data. 
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The radial distribution of the various turbulence intensities as well as of the 
shear stress are shown in figures 4-7. 

In  figure 4 a comparison is made between the present measurements and those 
of Corrsin & Uberoi (1949) ; and the results differ by some 25 %. This discrepancy is 
attributed to two factors : (i) a t  x/D = 20 the 00w did not attain its self-preserving 
state, and the relative turbulent intensity is thus significantly lower; (ii) the 
frequency response of the equipment used by Corrsin was not tested for fre- 
quencies below 7 Hz, A significant percentage of the turbulent intensity is, 
however, present at  frequencies below 7Hz.  When uX was measured at 
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FIGURE 6. Intensity of w'-fluctuation across the jet. 
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xjD = 60 using the standard DISA correlator, which has a flat response to 5 Hz, 
the resulting curve was significantly lower (figure 4). Spectral analyses of u' and 
v' were undertaken a t  x /D  = 90, and the results are plotted in figure 8. At that 
position in the jet, the filtering of all frequencies below 2Hz may introduce 
an error of 27 % in z2, and about 11 % in vX. The fact that the longitudinal 
intensity contains more of its energy a t  the lower part of the spectrum is indica- 
tive of the manner in which the energy is being transferred, namely from the 
mean motion to z, and then to T2 and T2. 
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Y l X  

-1.0 
FIGURE 7. Shcar stress distribution across the jet. -, calculated from 

mean velocity profile. A, x/D = 50; 0, 60; 0, 75. 

Towards the edge of the jet (y/x > 0.2), the intermittency factor is small, and 
the intensity of the lateral fluctuations should be larger than the intensity ofthe 
longitudinal fluctuations (Phillips 1955). From comparison of figure 4 with 
figures 5 and 6, a conflicting conclusion may be drawn. However, the interpreta- 
tion of the experimental results at large y/x is not reliable, because the direction 
of the mean flow in that region is not known. This anomaly may be explained 
in the following manner. From the distribution of intermittency (figure 9)) an 
estimate of the mean velocity profiles inside the turbulent flow was obtained. 
With the use of continuity, the angle between the direction of the mean flow 
and the axis of the X wire was calculated, and it appears that this angle was less 
than 3". It may thus be assumed that, inside the turbulent front, the hot wire 
was perfectly aligned with the mean flow. Outside the turbulent front the en- 
trainment velocity is approximately normal to the axis of the jet (Stewart 1956); 
and thus, from the cosine law, the following equations apply: 

- __ - 
'2 

Umeasured UiErb Y + ~;;,2ot ( 1 - Y) 9 

4 L a s u r e d  % VLlrb Y + ~ F o t  ( 1 - Y) 9 

-_ ~ - 
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where y is the intermittency, and only the linear response of the hot wire is 
considered. 

The potential fluctuations may be estimated from the above equations when 
y -+ 0. For y/x = 0.22, 

0 5 10 15 20 

f (Hz) 
FIGURE 8. Power spectral densities of u', v' and u'v' a t  x / D  = 90. Error due to 2Hz 
clipping: for u'~, - 27 yo; for v'~, N 11 %. - - -, location of highest shears; -, on axis. 
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FIGURE 9. Distribution of the intermittency factor across the jet. - - -, from 
flatness-factor of u'; ~ , counting method; A, Corrsin & Kistler (1955). 
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and hence there is no conflict with the theoretical results of Phillips (1955) 
- - -  namely 12 12 G t  = U*,ot + alp&. 

These results can serve only as an order-of-magnitude estimate. The distribution 
of a (figure 7) appears to be narrower than the distribution of the normal 

time 

FIGURE 10. Simultaneous oscilloscope traces of U ,  u ' ~  and u'v' signal. 
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FIGURE 11. Variation of skewness factor across the jet. x , u'; 0, TI'. 
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fluctuations. This may imply that the magnitude of the shear stress outside the 
turbulent front is vanishingly small. To check this contention, photographs of 
u'2, U and u'v' were taken, and are shown in figure 10. The turbulent bursts 
passing the hot wires are distinguishable by their high frequency; the potential 
fluctuations are visible in the trace of U and u ' ~ ;  but the trace of u'v' outside the 
turbulent, bursts appears quite steady. 
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FIGURE 12. Variation of flatness factor across the jet. x , d ;  0, w'. 
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FIGURE 12. Variation of flatness factor across the jet. x , u'; 0, w'. 

I0 

The distribution of was also calculated from the mean velocity profile, 
neglecting the normal stress term (a/&) ( u ' ~ - v ' ~ ) ,  and it is plotted in figure 7.  
The good agreement between the calculated and the measured profile of is 
attributed in part to the small scatter in the mean velocity distribution. 

_ _  

5. Intermittency, skewness and flatness factors 
The intermittency was measured using &/at and a2u/at2 as the basic signa,l, 

and so the potential fluctuations, which contain only low frequencies, were 
eliminated. The signal was processed by the method of Weskestad (1963) and 
by a method suggested by Bradbury (1964). The triggering level was adjusted 
before each reading and checked against traces of oscilloscope photographs. 
The two methods of measurement agreed very well. It became apparent that for 
x /D > 20 single differentiation sufficed. The measurements are in perfect agree- 
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ment with those of Corrsin & Kistler (1955) as indicated in figure 9. Townsend 
(1949) suggested that the flatness factor of any velocity fluctuation can be used 
as a measure of intermittency. In figure 9, the ratio 

is given, and it appears that it deviates from the measured intermittency distri- 
bution. Deviation in the same direction was observed by Heskestad (1963) in 
the two-dimensional jet and it results from (p)pot > 0. 

The skewness factors of u' and v' are given in figure 11 and the flatness factors 
of u' and wf are given in figure 12. It appears that the deviation of the probability 
density distribution from a Gaussian curve is approximately the same for all 
components, a t  least up to the fourth moment. 

6. Correlations and integral scales 
The variation of the longitudinal correlation coefficient 

U'(X + $Ax) d ( x  - +Ax) 

[u"(x + +AX)]* [u"(x - &AX)]* 
R,, = 

Ax/x 

FIGTJRE 13. Longitudinal correlation on the jet centre-line. x , x /D = 90; 0, 80; 0, 70; 
+, 60; A, S O ;  v, 40;  0, 30. A, = 0.0385~.  

along the centre-line of the jet is given in figure 13. It appears that the structure 
of the eddies is self-preserving from x /D  > 40, at x /D  = 30 slight deviation from 
self-preservation may be observed, particularly in the small-scale motion (i.e. 
Ax + 0). The variation of R,, with y is given in figure 14; the increasing scatter 
in the experimental results with increase of ylx is attributed to the intermittency. 
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The associated integral scale A, is shown on these figures. At a given cross-section 
A, increases in the lateral direction and a t  y/x = 0.2 it is almost double in com- 
parison with A, on the axis. The distribution of the lateral correlation 

~ ’ ( y  + +Ay) ~ ’ ( y  - $A$) 
[u”((Y + $Ay)]* [ ~ ’ ~ ( y  - +Ay)]* 

4 2  = 

1 .o 

4 1  

0.5 

0 0.10 0.20 
Ax/x 

FIGURE 14. Variation of the longitudinal correlation across the jet. 0, Af c 0.03852, 
y/x = 0; 0, O.O512x, 0.05; A, 0.06232, 0.10; X ,  0.0732, 0.15; 0, 0.07352, 0.20. 

FIGURE 15. Lateral correlation on the jet centre-line, 0, x /D = 60; 0, 90; A, 70; x , 80; 
v, 50;  +, 40. A, = 0.01572. 
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is given in figures 15 and 16 and the lateral distributions of the scales A, and A, 
are given in figure 1.7. The behaviour of R,, with Ay on the axis of the jet is 
different from the variation of R,, with separation distance, namely R,, < 0 for 
AyIx > 0.05. This would indicate the existence of some periodicity near the 

0.10 3" 
" 

AYI" 

FIGURE 16. Variation of the lateral correlation across the jet. 0, A, G 0.01572, 
y/x = 0 ;  0, 0 - 0 2 2 5 ~ ,  0.05; A, 0,0280~,  0.10; X ,  0.0300~, 0.15. 

0 0.05 0.10 0.15 0.20 

7 = Y I X  

FIGURE 17. Distribution of integral scales across the jet. 
0, AfIA,; x 9 A,; 0, A,. 
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centre-line of the jet. With the increase of the lateral distance from the axis the 
negative dip in R12 becomes less apparent. The integral scale A, increases with 
y at a given cross-section and the ratio of Af/A, is approximately a constant 
(A,/A, M 2.3). Correlations were measured by a number of investigators, and 
some of the results are presented in table 1. 

Author 

Corrsin & Uberoi (1949) 20 0 0.071 0.0132 5.37 - - - 
Laurence (1956) 20 0 0.018 - 

Sami (1967) 10 - - - - 0.1 0.085 0.065 1-31 

0.1 0.01 - - 
Gibson (1963) 50 0 0.081 - - 0.04 0.081 - - 

- 

Present investigation 90 0 0.0385 0.0157 2.43 0.1 0.062 0.028 2.21 

TABLE 1 

From a closer examination of the work of Laurence (1956), Sami (1967) and 
Davies et al. (1963), it appears that in the mixing region the integral scales increase 
rapidly with x. Further downstream, after the disappearance of the potential 
core, the scales no longer increase with the downstream distance, but may even 
decrease. I n  the self-preserving region the scales are again proportional to x, 
but the proportionality constant is smaller than that in the mixing region. The 
lateral scale measured by Corrsin & Uberoi (1951) was obtained in the same 
manner as in the present investigation and the agreement between the two is 
fairly good in spite of the difference in x/D. The longitudinal scales, however, 
were obtained by Corrsin (1943, 1957) and by Gibson (1963) from their measure- 
ments of one-dimensional power spectrum, namely A, = +7r[E1(0)/p]. This 
method requires extrapolation of the spectrum function to zero and is therefore 
only approximate. The present measurements were carried out to 0.5Hz, 
and it appears (figure 8) that El(n) remains constant a t  frequencies below 1 Hz. 
The calculated macroscale is Af/x = 0.041, which deviates by almost 7 % from 
the value obtained from the correlation measurements. An error of almost 100 % 
could occur, if the low frequencies were clipped at 3Hz and a parabola fitted 
to the curve to obtain El(0). This may indeed be the reason for the large dis- 
crepancies in A as shown in table 1. 

The autocorrelation of the u’ signal along the centre-line is plotted in figure 18. 
The abscissa on this figure is the time delay times the local mean velocity divided 
by x. As may have been expected, the autocorrelation function is self-preserving. 
The temporal integral, scale obtained from this figure is AfT = 0.0422, which 
is about 9 yo larger than the macroscale obtained from the space correlations. 
Furthermore, A,, remains constant in the lateral direction as long as y/x < 0.1, 
and then decreases rapidly (figure 19). This behaviour is contrary to expectation, 
since A, obtained from the space correlations increases with y. Since the measure- 
ments were consistently repeatable, it appears that Taylor’s hypothesis is not 
valid in this type of flow. Taylor’s hypothesis is, in general, limited to uniform 
flow with low levels of turbulence; some criteria for the applicability of the 
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hypothesis in shear flow were given by Lin (1953). Accordingly, one may justify 
the application of the hypothesis if 

The first condition is satisfied, since 

but the second condition is violated almost everywhere in the flow, and particu- 
larly near the edges. 

T f.',/x 

FIGURE 18. The autocorrelation of the u' signal along the jet centre-line. 
0, Z/D = 30; 0, 40; +, 60; x , 75; a, 200. AT, = 0.0420~. 

In view of the failure of Taylor's hypothesis in this flow, one must plot the 
autocorrelation results as a function of the average convection velocity of the 
energy-containing eddies. The convection velocity is obtained from the cross- 
correlation of the axial velocity fluctuation. One example of the plot of RIl7 is 
given in figure 20. From this figure one may construct curves of isocorrelations 
as a function of wire separation and time delay. Since the pattern of turbulence 
is not frozen, the definition of convection velocity is not unique, unless one 
obtains the correlations a t  a given frequency (see Wills 1964). Two average 
(representing all frequencies and averaged over time) convection velocities are 
conveniently defined from the cross-correlations, corresponding to  the conditions 

where 6 is the separation between the hot wires and 7 is the time delay. Drawing 
an envelope to the cross-correlation curves in figure 20, and taking the tangent 
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point to each curve of constant 6, yields the convection velocity (el) given by 
the first definition. Taking the time required for the maximum correlation for 
a given wire separation yields (gc.), corresponding to the second definition. The 
difference between the two varies from 10 to 20 yo, depending on the location in 
the jet (figure 21). These results, however, are somewhat ambiguous, since the 

F I G ~ E  19. The lateral distribution of the autocorrelation of the u' signal. -, 
A,, = 0.0422, x ~ D  = 40. 0, y/x = 0; A, 0.0121; X ,  0.05; 0, 0.097; +, 0.145. 

Time delay (sec) 

FIGURE 20. An example of the cross-correlation of the axial velocity fluctuations x/D, 
y/x = 0.012. Curves represent downstream wire separation (in.), their envelope represents 
autocorrelation in the moving frame. 

38 Fluid Mech. 38 
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FIamE 21. The distribution of convection velocity across the jet. (ucT)/g,,,, (uea)/g, 
(corresponding to  (aR/aS) ,  = 0, (aE/h) ,  = 0): 0, 0, x /D  = 30; ., 0, 40; +, 0, 50; 
V, V, 60; A, A, 70. - - - 9  (ucT)/u. 
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FIamRE 22. The dependence of the correlation velocity on the wave-number. A, Wills 
(1964) mixing layer; 0, present investigation, x /D  = 60, y /D  = 0;  x , present investiga- 
tion, x /D  = 90, y / D  = 0.1. 
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convection velocity, as defined above, is not entirely independent of the wire 
separation (Wills 1964). This effect may best be seen in figure 22, where the 
dependence of o,, on the wave-number is shown. It appears that this dependence 
is the same for the jet as well as the mixing layer, since all points collapse approxi- 
mately on one curve. 

The fact that the small-scale motion is convected downstream faster than the 
large eddies across the entire width of the jet is quite puzzling. Another strange 
phenomenon is the relationship between the convection velocity and the mean 
velocity. Intuitively, one would expect the large-scale motion to be associated 

I 
0 0.05 0.10 0.15 0.20 0 :5 

FIGURE 23. Lateral distribution of autocorrelations transformed with the convection 
velocity, 0, A,Jx = 0.0387, y/x = 0;  x , 0.043, 0.005; 0, 0.058, 0.097; +, 0.059, 0-145. 

with the failure of Taylor's hypothesis in shear flow, and indeed at  the centre-line 
of the jet this appears to be correct [(om) = gel (k N 25/ft.), and = ocT 
(k N 9O/ft.)]. Towards the edge of the jet the situation is reversed, for example, 
at 11 = y/x = 0.1, U = U,, (k N 3*5/ft.). This effect can be explained only if there 
is also an appreciable convection velocity in the lateral direction. 

The average convection velocity is now used to plot the lateral distribution 
of the autocorrelation measurements (figure 23). The agreement between the 
integral scales obtained in this manner and the ones obtained from the space 
correlations is much better. The scales increase with increasing 7, as expected 
from figure 14. The discrepancy between the scales obtained in figure 14 and 
those in figure 23 is attributed to the use of an average convection velocity. 

The envelope to the cross-correlation curves (figure 20) represents the auto- 
correlation in a frame moving with the average convection velocity (17c:,,). If the 
pattern of turbulence were frozen, this would have been a straight line given by 
(R,,,), = 1; consequently, the deviation of this curve from unity represents the 
rate at which the velocity pattern is distorted. The variation of the moving-axis 

- -  

38-2 
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autocorrelation along the axis of the jet is shown in figure 24; the self-preservation 
of this quantity is obvious from the figure. One may now define an integral time 
scale in the following manner: 

FIGURE 24, Variation of the movingaxis autocorrelation along the jet centre-line. 
0, x / D  = 20; +, 30; A, 40; 0, 60; x ,  75. Shaded area, = 0 . 0 1 7 8 ~ / 0 ~ ~ .  

FIGURE 25. Lateral variation of the moving axis: integral time scale, 7 = y/x: 
0, 0 ;  A, 0.036; 0, 0.05; A, 0.097; +, 0.265. Shaded area, (AT)c = 0.668T4. 
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This definition is somewhat different from the customary one, in which the 
upper limit is taken as infinity, but the use of the present definition avoids the 
necessity for extrapolation. (AT)c increases in the lateral direction in a similar 
manner to Af (figure 25). The results in figure 25 collapsed on one curve by dividing 
the time delay by T4, the time delay required for (R,,,), = +. 

I .o 

- c 3 
s 

5 1 

T (msec) 

FIGURE 26. Dependence of moving-axis autocorrelation on frequency. 
v, 500Hz; 0, 300; 0, 160; a, 80; +, 40; 0, all frequencies. 

In  their investigation of the mixing region, Davies et al. (1963) observed 
that (A,), did not increase monotonically in the lateral direction. They 
have related this quantity to (d8/dy)-1, stating that it represents the produc- 
tion of turbulence from the mean shear. This is certainly not the case in the 
self-preserving jet, where (AT)c increases monotonically outwards. Harmonic 
analysis of the cross-correlations indicates that the small-scale motion loses 
its identity faster than the larger-scale (figure 26), leading to the conclusion 
that (AT)c is associated more closely with the dissipation term than the pro- 
duction. 

7. The equations of the turbulent energy 
The general form of the momentum equations in cylindrical co-ordinates is 

u, +- = ---++v au2 auv i auw uv ian  

P ax ax ar r a$ r 

auv av2 i avw v2-w2 

auw avw law2 2vw 
ax ar r a# r 

-+- +--- 

-+-+--+- = 
ax ar r a$ r 

+--+- = --- -+- 
Pr a+ 



--( i av ) 2 ----v($)],} v2 2 
r2 @ r2 r2 

auw2 avw2 law3 3vw2 
ax ar r a$ r 

+--+- = +- 

(2) 
The continuity equation in cylindrical co-ordinates is 

i a  i a  a 
r ar r a$ ax 
- - ( r V ) + - - W + - U = O .  

Introducing U = g+u’; V = p+w‘; W = w+w’ ;  m = P + p ’  

and (according to our co-ordinates) 

x = x ,  r = y  (rQ)=z=y#). 

After some manipulation, averaging and adding yield 

a -  a 
- [ u3 + P i 7  + 2 Vu”] + - [3 UU’2 + u’3 + 21’2u’ + U P  + ow12 +uIw12] 
ax ax 

(3) 
To obtain from this equation the energy equation for the turbulent motion 

alone, one must subtract the analogous equation for the mean flow. The energy 
relation for the mean flow is derived in the same way, and reads 

I 1 - 
2 -ap -ap a -  i a  - -  

-[US+ BV2]+--[y(U2V+ V 3 ) ] + -  u-+ v- 
ax Y a Y  P ax a Y  [ 

- _ _  Y a Y  a [ Y ( z D ~ + 2 V ~ ) ] - 2 v [ ~ - ~ V 2 g - ~ V 1 V  -1 . 

a _- -~ -a0 y,aF -av 
= -2-[uu’~+Vu’v’]+zu‘~-+uw -++’2-  

ax ax ax ay 
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Subtracting (4) from (3) and dropping certain terms which are obviously 
small (see also Laufer 1954), one obtains 

Conv<ction 

a l a  + - [u‘(u’2+ v‘2 + w’2)] + - - y[v’(u’2 + 21’2 + W’Z)] 
\ ax Yay 

v / 

DifTuslon 

-- I [ ax a Y  a Y l  P [  ax Yay 
-ai7 -a7 -aD 2 a& i a  

+ 2  u’2-+11’2-+u’v’- +- -+--(yv’p) 
\ / .  0 - -. 

Production Pressure 
transport 

Dissipation 
~ ~ _ _  

+ (g)2+ (z)2+ ( 3 1  = 0. 
/ 

(5) 

This form of the equation is essentially the same as the one given by Rouse 
(1960). To apply this balance to the self-preserving region of the jet, the equation 
is rendered dimensionless by introduction of the following parameters : 

- - _ _  
7 = y/x, RD = U, Dlv, p2 = U” + d2 + w”. 

We further make use of the relation 

(from figure 3), and divide by Uk. The equation finally becomes 
A B 

Convection 

C 

. ., 
Pressure transport H 
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., 
Dissipation 1 

8. The triple velocity correlations 
, u'3; u'uf2; u'w'2 . Knowledge of the terms u ' ~ ;  u'd2; U ' W ' ~ -  IS necessary for 

evaluation of the diffusion parameters G and D in the energy equation. The 
values were measured a t  x / D  = 90, and are presented in figure 27. The measure- 
ments were performed with an ordinary x-wire arrangement, where u' and u' 
or w' could be obtained simultaneously. The output of both hot-wire sets was 
then manipulated in the usual way with Philbrick equipment, and was integrated 
over a sufficient time. For the triple correlation of the two transverse velocity 
fluctuations u'wr2, the method described by Townsend (1949) was applied: the 
x-wire is placed in the flow in such a way that its plane is parallel to the flow and 
a t  an angle of = 45" to the y- and z-axes. The outputs of the hot-wire set.s are 

_ ~ ~ _ _ _ _ _  

___ 

then 
El cc u' + k(v' + w'), 
E, cc u'-k(v'+w'). 

Subtraction of both signals gives 

E1-E2 C;C v'+w'. 

The square of  this combined signal yields 
~ -~ 

(El - E,), cc uT+ 2u'w' + w',, 
- ~ _ _ _ _  and the cube 

(El - E2)3 cc ut3 + 3 ~ ~ ~ 3 0 '  + ~ U ' W ' ' +  w ' ~ .  
_ _ _  __ 

From symmetry about the y-axis: wr3, u'w' and ut2wf vanish. 

Then 

and (El - E.,J3 cc + 32))w12, 

and therefore the correlation 
_ _ _ _  

(El - E2)3 d3  + 3 2 ) ' ~ ' ~  
CZJzp)]4 - (u'2+w12)#' 

__ 
from which U ' W ' ~  was then evaluated. 

The triple correlations can also be used for the correction of the non-linear 
hot-wire response. This correction has, however, not been applied to any of the 
measurements presented here. 
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The bulk convection as defined by Townsend (1949)' 
- 

9,- 21'92 
- _ -  urn - F '  

can be obtained from these values together with the turbulent intensities. 

4.0 

co 

$ 3.0 
X 

2.0 

1.0 

0 

9. The dissipation terms 
The dissipation term in the energy equation is: 

_ _ ~ ~  

+ (g)2+ (g)2+ (g)2]. 
To obtain the nine spatial derivatives, two principal methods are available. 
(i) Approximation of the differential quotient by the difference quotient (Laufer 
1954). (ii) Measurement of temporal derivatives and transformation to  spatial 
derivatives in the flow direction by use of Taylor's hypothesis: 

a l a  _ -  - _ _  - 
ax g a t '  

where a is the mean velocity (Townsend 1947). The temporal derivatives of 
u', v' and w' have been obtained using ordinary electronic differentiation 
circuitry with a linear frequency dependence up to approximately 10 kHz. 
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In view of the shortcomings of Taylor’s hypothesis in this kind of shear flow 
(this question has been treated earlier) the mean velocity e in the transformation 
from temporal to spatial derivatives is replaced by the convection velocity (c) of the au’lat signal. This velocity essentially corresponds to the convection 
velocity of the small-scale motion. It was measured, whereupon it was found 
that (eT) > at every point in the jet (figure 28). It was then assumed that 

I I I I 

0 0.05 0.10 0-15 0.20 

11 
FIGURE 28. Distribution of the convection velocity of the dissipation 

scale across the jet. A, <u,*,)/u,; x ,  <u,*,)/o. 

In figure 29 the values of 

are plotted. 
As for the lateral derivatives, only the approximate values could be measured 

by placing two hot wires very near together, so that by taking the r.m.s. value 
of the instantaneous difference of both signals the difference quotient was 
obtained (see also Laufer 1954). Only the values of 

1 aur 2 1 au’ 
~ .~ 

&) and -(Be) urn 
were determined in this way as the necessity of a very small Ay or Ax eliminated 
the use of x-probes (figure 30). 

These values were obtained with two hot wires of lmm length, placed at  
a distance of 0-25 mm. One must be extremely careful to match both (linearized) 
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hot-wire outputs exactly; otherwise, low-frequency fluctuation of high intensity 
would not cancel out completely, and would therefore cause grossly erroneous 
readings. This is much more crucial in the intermittent region of a jet in still air 
than in most other flow configurations. As an additional safeguard, a filter was 
used which eliminated all frequencies of the Au'-signal below 25 Hz. This value 
of 25 Hz is far below the energy-containing frequency of the time-differentiated 
signal, and thus has no influence on the true value itself. 

The remaining four derivatives in the dissipation term must be inferred from 
isotropy considerations. It is assumed, in accordance with Laufer (1954) and 
Sami (1967), that isotropic relations hold for the mean square derivatives with 
respect to a given direction in the jet centre, but we note in addition (figure 29) 
a tendency towards anisotropy in the off-centre regions. 

describes this behaviour approximately. It is then assumed that 

where k = 1 + e-2x10'x~2. The underlined terms denote the measured values. From 
figure 29 it is apparent that 

~- ___ 

Hence, the dissipation term can be written in the following way: 

The variation of this 'semi-isotropic' term in brackets is plotted in figure 31, 
together with the isotropic value 15 x (auf/ax)2 for comparison. 

Clearly the isotropic concept does not hold over the entire jet region. Around 
the centre-line the isotropic value almost collapses with the ' semi-isotropic ' 
one, but there is no real region of agreement. In  fact, the distribution based on 
the assumption of isotropy falls very quickly below the ' semi-isotropic ' distribu- 
tion, and the integral values of both curves have a ratio of the order of two. 
Laufer (1954) reports for channel flow a factor of 2.5. This behaviour suggests 
an alignment of the small eddies with the mean flow direction. The dissipation 
term as calculated here is probably less accurate than the other terms needed 
for the energy balance. The experimental repeatability of the individual time 
derivatives was relatively poor, and in some cases the tendency towards isotropy 
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near the centre-line of the jet was not observed. The apparent a,nisotropy of 
the small-scale structure is currently under further investigation. 

!O 

3 

FIGURE 3 1. Comparison of complete dissipation term with isotropic distribution. 
-, ‘semi-isotropic’ ; - - - , isotropic. 

10. The turbulent energy balance 
Prom the measurements described earlier, all terms of the energy balance, 

with the exception of the pressure transport term H ,  were plotted, and H was 
obtained by difference. The detailed distribution is shown in figure 32. I n  figure 
33 the turbulent energy balance is presented in the conventional way. The 
following observations can be made : 

(i) The dissipation has a maximum on the jet centre-line. It is, however, 
almost constant in the inner region. 

(ii) The production has a maximum a t  7 M 0.052 (maximum of shear stress 
at 7 M 0.058), and is a t  this point approximately equal to the dissipation. 

(iii) The convection is the largest contributor on the centre-line, where it has 
its maximum. It is there almost twice as large as the dissipation. At values 
7 > 0.117 the convection becomes negative. 

(iv) The diffusion is largest a t  7 = 0.030, where it is of the same order of 
magnitude as the dissipation, the production and the convection. 

(v) At 7 M 0.12 the dissipation is balanced solely by production and diffusion. 
(vi) The diffusion by pressure transport, which was obtained by difference, 

goes the same way as the diffusion by velocity fluctuations. It crosses the zero 
line a t  7 M 0.12, however. 

Because of some uncertainties in the measurements, and the various differen- 
tiation processes involved in the evaluation of the energy terms, allowances 
with respect to accuracy have to be made. The accuracy of the balance can be 
assessed in part, however, from the requirement that the integral of the total 
lateral diffusion has to be zero. This check was performed; it may be observed 
in figure 34 that the area under the dashed line is approximately zero. 

The overall picture of the energy balance is markedly different from the one 
obtained by Sami (1967). The measurements reported by Sami were made a t  
a maximum distance of x /D = 20, where it is clearly shown that the state of 



606 I. Wygnanski and H .  Piedler 

self-preservation is not yet reached, especially in case of higher-order or dissipa- 
tion terms. It is believed, therefore, that the discrepancies observed result from 
the lack of self-preservation in Sami's (1967) measurements. 

t 
2 0.20 

A 0.10 
0 

0 

0.10 

0.20 

d 0.30 
.- 

1 
FIGUFLE 32 FIGURE 33 

FIGURE 32. Detailed distribution of turbulent energy across the jet. 

FIGURE 33. Turbulent energy balance (equation (6)). - - - -, dissipation; - - - , diffusion ; 
_ _  , convection; - , production; - - - -, pressure transport. 

FIGURE 34. Distribution of the lateral diffusion. -, total diffusion in 
y-direction ; - - - , ?I x (total diffusion). 

11. The turbulent microscales 
The general definitions of the microscales Af and A, are (Hinze 1959) 

In  addition to these conventionally used scales, we may define 

From the spatial derivatives of the fluctuations described above, these scales 
can easily be computed. 
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Another method for measuring the microscale was proposed by Laufer (1948) 
and Liepmann (1949), based on a paper by Rice (1944, 1945). According to the 
analysis of Rice, the number of zero-passages per unit time, No, of a random, 
stationary signal uf is related to the signal derivative in the following way: 

provided that both uf and au'lat have a Gaussian probability-density distribution 
and uf(au'/at) = 0. These two conditions, while being true for homogeneous 

FIGURE 35. A n  example of the evaluation of microscale from lateral correlation. 

turbulence, can only be approximately true in the centre of the jet, and will be 
violated in the off-centre regions. Measurements using this technique were 
nevertheless incorporated. A photomultiplier was used to count the zero 
passages of the signal on an oscilloscope screen. The measurements were made 
for the uf and the v' fluctuation along the jet centre-line, and across the jet at  
z / D  = 90. The microscales were then computed from the formulae: 

and 

Lastly, the scale A, was evaluated from the lateral correlation measurements, 
which are described in a previous section, and an example is shown in figure 35. 

To obtain the microscales for the turbulent regions alone, one has to take the 
intermittency factor into account. On the centre-line y = 1, and thus no correction 
is necessary. The variation of the microscales along the centre-line, as measured 
with the various methods, is given in figure 36. 

It can be assumed that iu,,,,,jat = 0 in the irrotational region, and that 
(8;) is a convection velocity in the turbulent (i.e. rotational) regime only. 

Thus, the results as obtained from the differentiated signal, and the convection 
velocity of the small scales represents approximately the microscale in the 
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rotational region. The microscales obtained from zero-counting have to be 
multiplied by y to yield the values for the rotational regime. The lateral variation 
of Af, A, and A$ for the rotational part of the jet, as obtained by the various 

t 
I I I 
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10 50 100 

X l D  

FIGURE 36. Variation of microscales along the jet centre-line. 0, Corrsin & Uberoi (1951) ; 
0, from zero-counting; v, from differential signal; x , from osculating parabola. 

methods, is shown in figure 37. The measurements were taken a t  x /D  = 90. The 
variations of the scales along the axis (figure 36) show self-preservation. The 
sizes of the scales are: 

= 4.8 x 10-3 x z, 

A, = 3.7 x 10-3 x X, 

A; = 3-zx  10-3xx. 

The values obtained from zero-counting appear to be generally higher than those 
from the differentiated signal. This behaviour was also observed by Liepmann 
(1949) and Liepmann & Robinson (1953) and may probably be attributed to the 
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deviation of the turbulent fluctuation from the Gaussian probability distribution. 
The variation of the microscales across the jet, as presented in figure 37, shows 
a steep increase of Af towards the edges of the jet, whereas A, decreases, though 
to a lesser degree. The scale A; increases with 7, as does A,, up to a value of 

I I I I 

0 0'0.5 0.10 0.15 0. 

9 

0 

FIGURE 37. Variation of microscales across the jet. 
0, 7 ,  zero-counting; 0, A,; x ,  A,; V, A:. 

approximately = 0-12. Since each of these scales depends on a different spectral 
function (El or E2), their similar dependence on 7 implies a similar relationship 
between the two one-dimensional spectra. 

The values obtained by the zero-counting method are about 20 to 25 yo larger 
than the ones measured with the differentiated signal on the centre-line. This 
discrepancy becomes more significant towards the outer regions. One can then 
conclude that the zero-counting method fails in this kind of flow. 

12. Correction of microscales 

This may be shown for the case of A,. 
The correction of the microscales resulting from a finite wire length is negligible. 

The appropriate correction formula as given by Frenkiel (1954) is 

which is essentially equal to the formula used by Liepmann (1949). Then k is the 
correction factor, and the parameter G is defined, as in Batchelor & Townsend 
(1947), as 

From measured energy spectra a t  x / D  = 90 and 7 z 0-06 it was found t o  be 
roughly equal to G x 140. With the hot-wire length I = l.Omm and a measured 
Af x 18mm, ( l /A f )2  = 0.0031, and the correction factor becomes 

k x 0.985, 

which is within the experimental scatter of the measurements. 
39 Fluid Mech. 38 
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As a matter of interest, it may be mentioned that the approximate relation 
G = 0.5ReApS (for Re% $ l ) ,  which is derived by Batchelor &, Townsend (1947) 
for isotropic flow, yields a value of G z 160 (where S is the skewness factor). 

13. Some comments about the properties of the turbulent fluid and 
the eddy structure 

Some of the measurements may add to the information about the eddy 
structure in the jet, despite the fact that they are in no way comprehensive. 

The one-dimensional spectra measured a t  two points in the flow (on the centre- 
line and a t  point of maximum shear) did not show a distinct two-component 
structure, as observed by Townsend (1950) in the self-preserving wake. About 
50 yo of the turbulent energy is associated with frequencies smaller than 5 Hz, 

I/,,, 
0 0.05 0.10 0.15 0.20 

7 = YIX 

FIGURE 38. Lateral variation of some flow characteristics. 

which would indicate that the energy-containing eddies are quite large. Indeed, 
the one-dimensional spectra peak at about 2Hz.  A loosely defined eddy, of 
a size equivalent to one-half of the jet-width, would correspond to a frequency 
of approximately 1 Hz. In  this frequency range, the Koohn-Hite filter is best 
suited for spectral measurements, since it has a bandwidth equal to one half 
of the centre frequency. Thus, any discontinuity in the slope of the one- 
dimensional spectra (indicating a double structure) should be observed. It may 
also be noted that these large eddies carry most of the shear stress as well. 
This is in agreement with the measurements of Bradshaw et al. (1963) in the 
mixing region and the measurements of Bradbury (1965) in the two-dimen- 
sional jet; it is contrary to Townsend’s large-eddy hypothesis. 

As was already pointed out, the macro- and microscales of the eddies change 
quite significantly across the jet. The intensities in the turbulent fluid change 
somewhat less across the jet than the mean velocity, but the differences are not 
very significant (figure 38). The shear coefficient changes relatively little in the 
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outer part of the jet, yet it can hardly be considered a constant. The approximate 
mean value of u’v‘/u‘~ over two-thirds of the jet width is 0.2, which is very much 
smaller than the corresponding value in the wake (Townsend 1956). 

_ -  

The eddy viscosity defined by 
~ 

u’v’ 

Y a( OlY) 
a Y  

is constant across the flow, and the same is approximately true for the rate 
of energy dissipation within the turbulent fluid. This result is somewhat 
surprising, because the angle of strain, astrain: -_ 4 En-’ [$(dD/ay)/(aa/az)], 
and the angle of stress, astress = + tan-1 [ Z U ’ V ‘ / ( U ’ ~ -  d2)] ,  are quite different 
(figure 39). From previous results (Corrsin 1957) it appeared that the disparity 
between those angles was associated with the failure of the simple gradient 
hypo thesis. 

I 6 0  

0 0.05 0.10 0.15 0.20 

r 
FIGURE 39. Lateral distribution of stress and strain angles and the turbulent 

energy diffusion coefficient. - - -, CL strain; - , a! stress; - x -, eEy/Um. 
- 

From the triple correlations one can obtain the rate of transport of turbulent 

~ ~ - _ _  energy across the jet: 
v‘q2 = v’u’2 + v‘3 + v‘w‘2. 

The energy diffusion coefficient eE may then be defined as 
__ 
v’q2 

a -  
E E = - - .  

& (q? 

Taking the intermittency into account, the relation for the rotational regime 
becomes approximately __ 

v’q2 - 
‘Ev - - 

Y- : (3 q2- 

As shown in figure 39, eEEr is constant in the region 0 < 7 < 0.10, and decreases 
when 7 > 0.10. The value of eEv in the central part of the jet is 

“E. x 6 x 10-3(m). 
u,, 

39-2 
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The value for the momentum exchange coefficient (i.e. eddy viscosity) was 
found to be 

which is of the same order of magnitude as the energy diffusion coefficient. 

of the turbulent energy is justified to some extent. 
Thus, it appears that for the turbulent jet the concept of gradient diffusion 

The authors are indebted to Dr F.H.Champagne, who constructed the jet 
facility. The help of F. Lange in the assembly of some of the instrumentation and 
collection of data is greatly appreciated. 
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